Featuring my friend from Malaysia, Mr Peng Cheng posing in the Physics Laboratory of Trinity College. He was carrying one of the coloured filters for an Photoelectric Effects experiment. That day was also the last session of laboratory in Trinity. We studied this effects both in Chemistry and Physics.
Upon exposing a metallic surface to electromagnetic radiation that is above a threshold frequency (which is specific to the type of surface and material), the photons are absorbed and current is produced. No electrons are emitted for radiation with a frequency below that of the threshold, as the electrons are unable to gain sufficient energy to overcome the electrostatic barrier presented by the termination of the crystalline surface (the material's work function). In 1905 it was known that the energy of the photoelectrons increased with increasing frequency of incident light, but the manner of the increase was not experimentally determined to be linear until 1915 when Robert Andrews Millikan showed that Einstein was correct.[3]
By conservation of energy, the energy of the photon is absorbed by the electron and, if sufficient, the electron can escape from the material with a finite kinetic energy. A single photon can only eject a single electron, as the energy of one photon may only be absorbed by one electron. The electrons that are emitted are often termed photoelectrons.
The photoelectric effect helped further wave-particle duality, whereby physical systems (such as photons, in this case) display both wave-like and particle-like properties and behaviours, a concept that was used by the creators of quantum mechanics. The photoelectric effect was explained mathematically by Albert Einstein, who extended the work on quanta developed by Max Planck.
In the one-step model an electron can take multiple paths through this three steps. All paths can interfere in the sense of the path integral formulation. For surface states and molecules the three-step model does still make some sense as even most atoms have multiple electrons which can scatter the one electron leaving.
The photoelectric effect helped propel the then-emerging concept of the dual nature of light, that light exhibits characteristics of waves and particles at different times. The effect was impossible to understand in terms of the classical wave description of light, as the energy of the emitted electrons did not depend on the intensity of the incident radiation. Classical theory predicted that the electrons could 'gather up' energy over a period of time, and then be emitted. For such a classical theory to work a pre-loaded state would need to persist in matter. The idea of the pre-loaded state was discussed in Millikan's book Electrons (+ & -) and in Compton and Allison's book X-Rays in Theory and Experiment. These ideas were abandoned.
(courtesy of wikipedia.com)
No comments:
Post a Comment